GPU Edge Bundling

Description

The code in this repo is inspired from d3.ForceBundle

Edge Bundling Algorithms (What Do They Do)

Node-link graphs with many edges and nodes suffer from visual clutter, edge-bundling algorithms transform and group the edges of a node-link graph in such a way as to improve the readability of the diagram. The process is for example analogous to bundling network cable wires along their route in order have a clear understanding of the links between entities and structural patterns of the network. There are several algorithms in this class, from ones that use hidden user-defined meshes to control the bundling [1], to case specific ones such as for hierarchical data [2] and finally to self-organizing methods based on physical force interaction simulations [3].

Force Edge Bundling

Force edge bundling [3] works by modelling edges between nodes as flexible springs which can attract each other if certain geometrical compatibility criterions are met. The input for the algorithm is a simple node-link diagram of a graph with nodes and edges. In order to change the shape of the basic straight line edges between nodes, the algorithm proceeds by subdividing edges into segments. Attraction *spring* forces are simulated between each pair of consecutive subdivision points on the same graph-edge. Moreover, attraction *electrostatic* forces are computed between subpoints of different edges which are geometrically compatible. The combined force acting on each subdivision point is computed and the points are moved a certain step size in the direction of the force. The force-simulation on these sub-points is repeted a certain amout of iterations. After the end of a cycle of iterations the resulting graph-edges are divided again in smaller segements and the whole process repeats itself until the end cycle is reached. It's important to note that the position of original node-points are fixed throughout the simulation. This repo contains 2 implementations of the FEB algorithm:

Examples

US Air lines

References